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This paper investigates the use of proof (or acceptance) test data during the reliability-based design optimization of
structural components. It is assumed that every component will be proof tested and that the component will only
enter into service if it passes the proof test. The goal is to reduce the component weight while maintaining high
reliability by exploiting the proof test results during the design process. The proposed procedure results in the
simultaneous design of the structural component as well as the proof test itself, and it provides the designer with direct
control over the probability of failing the proof test. The procedure is illustrated using two analytical example
problems, and the results indicate that significant weight savings are possible when exploiting the proof test results

during the design process.
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I. Introduction

ELIABILITY-BASED design optimization (RBDO) is
becoming more popular as a method for designing reliable
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structures when presented with uncertainty in the problem
parameters. There is currently a large number of research projects
that investigate the efficient application of RBDO to real-life
scenarios. These include methods for efficiently estimating the
probability of failure (e.g., Grandhi and Wang [1]) as well as methods
for updating the uncertainty as more data (typically as a result of
additional testing) become available (e.g., Acar et al. [2]). In general,
these studies present numerically efficient methodologies that
provide the most benefit (typically in the form of weight savings) by
using RBDO.

This paper investigates an alternative RBDO approach that may
enable significant weight savings without accepting higher risk. The
approach is best explained by considering the life cycle of a structure
as outlined by the U.S. Air Force Aircraft Structural Integrity
Program (ASIP). The ASIP considers the full life cycle of a vehicle
consisting of requirement specification (task 1); design and
development (task 2); verification testing (task 3); test evaluation/
analysis for certification and sustainment (task 4); and force
management/sustainment (task 5). The ASIP is focused on designs
that result in robust vehicle operations, and it is usually acceptable to
incur performance (i.e., weight) penalties that minimize periodic
inspections and/or repairs. The ASIP process only provides loose
coupling between the outlined tasks. The present paper will propose
an integrated engineering approach that combines several of these
tasks to enable significant performance enhancements by using proof
(or acceptance) test data during the RBDO of structural components.
A key assumption in the present work is that every component that is
manufactured is proof tested and will only enter into service if it
passes the proof test. The research was motivated by the current
design process at NASA, which can be summarized as 1) mostly a
deterministic design process, 2) typically only a relatively small
number of components are manufactured, and 3) virtually all
components are proof tested before entering service.

The advantage of considering a RBDO approach over the
traditional deterministic approach within the NASA context has
already been illustrated (e.g., Mason and Krishnamurthy [3]). The
goal here is to show how the RBDO process can further benefit by
also exploiting proof test data in cases where it is available. In this
research, a proof test is considered as a test that simulates the service
load and is performed on every component before entering service.
Currently, proof tests are conducted at NASA, but the results of the
proof tests are not directly included in the design process. The
influence of proof testing on the strength distribution has been
previously reported by Herbert and Trilling [4] in the context of
thermal loading. They accounted for the reduced uncertainty in the


http://dx.doi.org/10.2514/1.J051495

Downloaded by UNIV OF MISSOURI-COLUMBIA on March 18, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J051495

2160 VENTER AND SCOTTI

strength distribution in their RBDO approach but did not include the
proof test as part of the design process. In contrast, Acar et al. [2]
considered the influence of future uncertainty reduction measures in
the form of structural tests on aircraft safety during the design
process, resulting in simultaneous design of the structure and the
tests. However, their work concentrated on future tests that are aimed
at the reduction of uncertainty (for example, coupon tests) and not
proof tests. In addition, the additional information is used to update
the uncertainty in the mean failure stress using a Bayesian update
procedure. In the current work, proof tests will be considered, and no
Bayesian updating will be performed.

The proposed RBDO approach aims to provide significant weight
reductions while maintaining high levels of reliability. Also, the
methodology provides the designer with direct control over the
probability of failing the proof test itself. Controlling the probability
of failing the proof test is a desirable and extremely important feature.
In some cases where the cost of failing the proof test is bearable,
larger weight savings can be realized by accepting higher risk. In
other cases where a proof test failure would be extremely costly, the
risk of failing the proof test can be reduced but will increase the
component weight.

Although the current work was inspired by the NASA design
process, where virtually all components are proof tested before
entering service, the methodology could also be used to investigate
the addition of simple proof tests to components that are currently not
proof tested. For example, commercial aircraft are typically type
certified. Type certification involves extensive testing that is
performed on a small number of prototypes, whereas the production
planes that are delivered to the customers are only subjected to
limited testing. In these cases, it could be worthwhile to investigate
the cost benefit of adding simple proof tests to each of the production
aircraft as well. An example may be to connect actuators to the wings
to perform a simple bending proof test on each aircraft.

II. Reliability-Based Design Optimization

The traditional deterministic design process accounts for
uncertainty in the problem parameters by using safety factors.
Safety factors for airframe structural design have a long heritage that
has evolved over many years. The safety factor approach provides for
structural reliability by requiring that the design structural strength be
greater than the stresses induced by external loads by at least the
factor of safety. Historically, the safety factor accounts for
uncertainties such as the occurrence of extreme loads, inaccuracies of
stress prediction methods, variability of materials, variability in
fabrication workmanship, and structural strength deterioration over
the lifetime of an airframe. The values used for safety factors have
evolved over many years and typically have been reduced as greater
knowledge and reduced variability in materials and processes were
obtained [3].

The traditional deterministic design process is illustrated by the
following example, where a structural component is designed subject
to a stress constraint as follows.

Minimize
) (1a)
such that
Omax (%) = Ot xjover < x; < xPP i=1n (1b)

In Eq. (1), f(x) represents the objective function (typically
weight), x is the vector of n design variables, 0,,,, is the maximum
stress in the component, and oy, is the failure stress. Upper and lower
bounds on the design variables are specified by x1°*°" and x;**,
respectively.

To deal with uncertainty, a safety factor is typically used to obtain a
design load L for calculating the maximum stress o,,,,. In addition,
the stress limit is adjusted to obtain an allowable stress limit &y,;. A
standard approach for generating an allowable stress limit is to obtain
data from simple coupon or element tests and then perform a

statistical analysis to estimate an allowable stress, which has a
specified low probability of causing a structural failure. The
allowable stress limit is calculated to be the mean failure stress from
the tests, reduced by the product of the test standard deviation times a
stress limit adjustment factor. The stress limit adjustment factor used
here is referred to as a K factor and is a function of the desired
reliability, the confidence requirement, and the test sample size. A K
factor equal to 3 (which implies three standard deviations from the
mean value) is assumed here without specifying these inputs. As a
comparison, if a reliability of 99% with a 95% confidence level
(A-basis allowable) is desirable and the material failure is governed
by a normal distribution, about 35 tests are required to obtain a K
factor of 3 [6].

If we assume that the uncertainty in the load and the failure stress
are normally distributed, the design load can be obtained from

L =SF(u, +3s;) @)

where p; + 3s; is defined as the limit load. Launch vehicles
typically makes use of a limit load of three standard deviation loads
from trajectory simulations with dispersion. Aircraft have a larger
empirical database that they can use. For the purposes of this paper, a
limit load of three standard deviation loads from the mean load was
used, similar to the approach used for launch vehicles. The allowable
failure stress could be obtained from

6fail = Hopy — 3s“mn (3)

In Eq. (2), the safety factor (SF) is applied to the limit load, which
in the present work is defined as three standard deviations s; above
the mean value p; of the service load L. In Eq. (3), an allowable
failure stress, similar to the A- or B-basis approach, is defined. The
allowable failure stress is defined as three standard deviations s,
below the mean value w,,  of the failure stress oy,;. Note that the
deterministic design process typically does not directly account for
uncertainty in problem parameters other than the applied load and
stress allowable.

In contrast, RBDO does not make use of safety factors but instead
directly accounts for the uncertainty in all problem parameters to
obtain a probability of failure. The equivalent RBDO formulation for
Eq. (1) would be to minimize

f(x) (4a)
such that

P(F) <P, X<y, =x™ i=1n (b

where the probability of failure P(F) is constrained to be less than the
allowed probability of failure P,., specified by the designer.

In the present work, the deterministic design approach is simulated
by first solving each example problem using the deterministic
approach outlined in Eq. (1). For the deterministic design, the design
load and failure stress allowable are obtained from Eqgs. (2) and (3),
respectively.

The deterministic design is followed by a reliability analysis,
where all random variables are assumed to be independent and
normally distributed with known distributions. Although independ-
ent, normally distributed random variables are assumed in the present
work, dependent and nonnormal variables could also be considered.
These variables could be transformed into independent normal
variables, using for example the Rosenblatt [7] transformation. The
results of the deterministic design are assumed to be the mean
quantities in the reliability evaluation of the deterministic design. The
resulting probability of failure is then used as the probability of
failure constraint P, in Eq. (4). The idea is thus to obtain a RBDO
design with the same reliability as the corresponding deterministic
design. Finally, the proof test data will be accounted for in an attempt
to realize further weight savings.
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Fig. 1 Probability density distributions for stress due to applied load
and structural strength (region contributing to probability of failure
indicated by shading).

III. Influence of Proof Testing

When calculating the probability of failure for a structural
component, one is interested in the probability that the applied load is
larger than the strength of the structure. The probability of failure is
denoted by P(F). Schematically, a qualitative representation of the
failure region can be represented as shown in Fig. 1, with the failure
region indicated by the shaded area.

When performing a successful proof test, the strength of the
component that was proof tested is known to be larger than the load
value at which the proof test was conducted. If one assumes that the
component either fails the proof test or remains in pristine condition
after the proof test, the proof test in effect cuts off the tail of the
strength distribution as illustrated in Fig. 2. The assumption that a
component that passes the proof test is not damaged by the proof test
will be used throughout this paper. This is a critical assumption that
should be noted. Accounting for the effect of damage as a result of the
proof test will be the subject of future research.

The effect of the proof test on calculating the probability of failure
after the proof test is performed is shown in Fig. 3. Note that Fig. 1
denotes P(F), whereas Fig. 3 denotes the conditional probability
P(F|A), resulting in a much smaller failure region.

The probability of failure shown in Fig. 3 can be expressed as a
conditional probability of failure, denoted by P(F|A). This
conditional probability of failure can be stated as the probability of
failure (condition F), provided that the proof test was successful
(condition A). The proof test is successful if the component does not
fail and is not damaged when the test is performed. When considering
the proof test results in the design process, the probability of failure of
the structure is obtained from the conditional probability of failure
P(F|A) rather than from the probability of failure P(F), as was the
case when no proof test data were considered.

The deterministic design approach thus reduces the probability of
failure by making use of proof tests. However, this reduction in the
probability of failure is not quantified and is thus not directly
included in the design process. In the present work, this reduction in
the probability of failure will be quantified by calculating the P(F|A)
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Fig. 2 Influence of proof test on strength distribution (region indicating
the probability of failing the proof test 1 — P(A) is shaded).
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Fig. 3 Probability density distributions for stress due to applied load
and structural strength including proof test effect (region contributing to
probability of failure indicated by shading; note that Fig. 1 denotes P(F),
whereas Fig. 3 denotes the conditional probability P(F|A)).

value and by using this value in the design process to realize
additional weight savings. The RBDO formulation when including
the proof load results can then be written as follows.

Minimize

f(x) (52)
such that

P(F|A) < Preq 1— P(A) < Pproof xi.ower < X; < x;lpper

P — lower upper R—
i=1,n p; Sp_,-ipj Jj=1Lm

(5b)

where 1 — P(A) is the probability of failing the proof test, Py, is the
maximum acceptable probability of failing the proof test, and p; are
the variables that describe the magnitude of the proof load. When
compared to Eq. (4), this new RBDO formulation has an additional
constraint that controls the probability of failing the proof test and
includes extra design variables p; that describe the magnitude of the
proof test loads. The designer thus has direct control over the
probability of failing the proof test, and the magnitude of the proof
test loads are designed simultaneously with the structural
component.

IV. Calculating the Probability of Failure

Because the calculation of the probability of failure is a costly
exercise that requires multiple function evaluations, it is no surprise
that the literature provides many methods for efficient calculation of
the probability of failure. These methods typically have to manage a
tradeoff between numerical efficiency and accuracy. Efficient
evaluation of the probability of failure is especially important in an
optimization framework, because the computational cost is
compounded by the fact that a two-level optimization process is
encountered in RBDO. At the outer level is the structural
optimization problem, and at the inner level is the calculation of the
probability of failure.

The focus of the current study is not the efficient calculation of the
probability of failure but rather the effect of including the proof test
data in the RBDO process. As a result, it was decided to use a well-
established and popular method for calculating the probability of
failure. The method selected here is the first-order reliability method
(FORM) [8]. It should be noted that, although the FORM approach is
widely used, it may not converge to the most-probable point of failure
(MPP) for cases with complex limit state functions. For problems
with complex limit state functions, system reliability techniques
based on fault or event trees and numerical techniques tailored to the
specific problem at hand may be required.

The FORM method operates in the standard normal space, where
all random variables are assumed to be independent normal variables
that are scaled to have a mean value of 0 and a standard deviation of 1.
A normal distribution with a mean of 0 and a standard deviation of 1
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is denoted by N(0, 1). The FORM method estimates the probability
of failure using a linear approximation of the limit state function
G(X) at the most probable point of failure, where the uppercase X is
used to denote a random variable. In the present work, the limit state
function is defined in terms of the stress constraint as

G(X) = Ufail(X) - O—max(AX) (6)

The limit state is defined as G(X) = 0 and provides the interface
between the failure G(X) <0 and safe G(X) > 0 regions of the
design space. Note that there is a different convention between the
constraint definition for the deterministic design process and the limit
state function used in RBDO. In Eq. (1), the stress constraint is
defined to be violated when it has a positive value. In Eq. (6), the limit
state function is defined to be violated when it has a negative value.
This difference was applied here for consistency with the existing
literature.

The FORM algorithm used here is a straightforward
implementation of the algorithm outlined in Haldar and Mahadevan
[9]. This algorithm makes use of a Newton—Raphson type iteration
scheme to find the MPP.

When using the FORM approach, the linearized limit state
function is a linear combination of independent, normal, random
variables and as a result is also a normally distributed random
variable. The estimated probability of failure P(F) obtained from the
FORM method can then be calculated numerically using Eq. (7):

P(F) = P(G_, > p)= /:O\/%_nexp[_%(g/)z] dg’ 7

where B indicates the shortest distance from the origin of the standard
normal space to the limit state function and is obtained from the
FORM method. The uppercase G” denotes the random variable that
describes the linearized limit state function in the standard space, and
the lowercase g’ denotes an instance of that random variable. The
integral on the right-hand side of Eq. (7) is simply the probability
density function (PDF) of a normally distributed random variable in
the standard space.

To evaluate the conditional probability of failure P(F|A), it is
necessary to use the multiplication rule (e.g., Haldar and Mahadevan
[91), which states that the joint probability P(F N A) of F and A is
equal to

P(F N A) = P(F|A)P(A) 8)

where P(A) can be obtained directly from the FORM method as
outlined previously. P(F N A) can be obtained from

P(FNA)=P((G = B)) N (G = By)
o foo |R|'/? |
:/ /ﬂ TGXP[_E“' R g}dgldgz ©)

which is simply the integral of the bivariate normal probability
density function in the standard space. Within the current framework,
F and A are guaranteed to be normal variables due to the fact that they
are obtained from linearized limit state functions. To evaluate Eq. (9),
it is first necessary to perform two FORM analyses to obtain P(F)
and P(A) respectively. These two FORM analyses also provide the
values for B, and f8, as well as the information required to construct
the correlation matrix R. The correlation matrix is a symmetric
matrix with all diagonal elements equal to one. For the bivariate case
of Eq. (9), this is a 2 x 2 matrix, and only a single entry r, is
unknown. The r;, value can be obtained from the dot product of the
gradients of the linearized limit state functions (e.g., Pandey [10]). As
was the case for Eq. (7), no analytical solution exists for this integral.
However, several very efficient numerical integration schemes are
available (e.g., the algorithms provided by Donnelly [11], Drezner
and Wesolowsky [12], and Cox and Wermuth [13]).

V. Calculating the System Probability of Failure

So far, the conditional probability of failure has been considered
for the special case where only a single service load failure F and a
single proof load A was considered. In general, however, multiple
service load failures F and multiple proof loads A are possible.
When considering more then one failure mode, one needs to consider
a system reliability approach to obtain the probability of failure for
the component. There are many system reliability approaches
available, but the two that are most often encountered are a series and
a parallel approach (e.g., Haldar and Mahadevan [9]). Serial system
failure occurs when any of the failure modes are violated, and the
resulting probability of system failure represents a union of all the
failure events as illustrated in Eq. (10):

Parallel system failure occurs when all of the failure modes are
violated and the resulting probability of system failure represents an
intersection of all the failure modes as illustrated in Eq. (11):

P,(F)=P(F,NF,N...NF,f) a1

The parallel system failure P, (F) can easily be evaluated from

Pm%fm.fwmﬁﬁﬁlﬂr@ki dg,
P Bt o | (zﬂ)mf/Z 2 e mf
(12)

which is the same integral as shown in Eq. (9) but is now generalized
for mf failure modes, with the correlation matrix R beingamf x mf
matrix. Unlike the univariate and bivariate integrals of Eqs. (7) and
(9), the multivariate integral of Eq. (12) can be more difficult to
evaluate, especially for larger values of mf. Typically, this
multivariate integral is evaluated using one of three approaches (e.g.,
Gassmann et al. [14]): 1) bounding the answer (e.g., Ditlevsen [15],
Ramachandran [16] and Ditlevsen and Bjerager [17]); 2) approx-
imating the answer (e.g., Hohenbichler and Rackwitz [18], Tang and
Melchers [19], and Pandey [10]); and 3) performing numerical
integration (e.g., Drezner [20] and Genz [21]).

Numerical integration can be costly and is typically limited to
between 100 and 500 failure modes. In the present work, numerical
integration is performed using the algorithm developed by Genz [21].
The Genz algorithm presents an efficient numerical integration
scheme for solving Eq. (12) for larger values of mf, up to 500.
Numerical integration is a reasonable approach here because the
number of failure modes considered is in the order of 10. For larger
problems, the bounding or approximation approaches should be
considered instead.

The series system failure P,(F) cannot be obtained directly from
Eq. (12) because the definition is based in the union of the failure
modes instead of the intersection as was the case for the parallel
system failure P,(F). However, two approaches are available that
can be used to convert P (F) into a form that can be evaluated by
Eq. (12). The first approach is to make use of the complement of the
failure modes F to obtain

P,(F)=1—P(F) (13)

In addition, De Morgan’s rule (e.g., Haldar and Mahadevan [9])
can be used to expand the complement as follows:

P(F)=P(F,UF,U...UF,)=P(F,NF,N...NF,)
(14)
which is in a form that can be evaluated by Eq. (12).
The second approach is to make use of the definition of the

probability of the union of two or more events. For example, for two
failure modes this would provide (e.g., Haldar and Mahadevan [9])

P(F)=P(F,UF,)=P(F) + P(F,) —P(F,NF,) (5
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For this example, the first two terms on the right-hand side can be
evaluated using the univariate integral of Eq. (7), while the third term
can be evaluated using the bivariate integral of Eq. (9). In general,
when considering more than two failure modes, the terms on the
right-hand side will include more than two failure events, and the
multivariate integral of Eq. (12) can be used.

The advantage of using the first approach is that only a single
multivariate integral is required. The disadvantage is that two
numbers that are very close to each other are subtracted, with a
potential loss in significant digits. The advantage of the second
approach is that the problem with subtracting two numbers that are
close to each other is avoided. The disadvantage is that the number of
terms on the right-hand side grows exponentially as the number of
failure modes increases. For example, for three failure modes the
number of terms is equal to seven. However, the first-order terms
(P(F,) and P(F,) in the previous example) are the most important,
and an upper bound to P,(F) can be obtained by considering only
these terms. The advantage then would be that the number of terms
grows linearly with the number of failure modes and that one only has
to perform a number of numerically efficient univariate integrals
rather than one numerically expensive multivariate integral.

When the conditional probability of failure P(F|A) that occurs
when accounting for multiple failure modes and multiple proof tests
is considered, it is also necessary to deal with both the series and
parallel system reliability definitions. For the parallel system, this
results in

P(F N A)
P(A)
P((F,NF,N...0F,) N (A NA,N...NA,,))
- P(A,NA,N...NA,,)

P,(F|A) =

16)

where mp represents the number of proof test failure modes.
Equation (16) can be evaluated using Eq. (12). Note that the
conditional probability of failure requires the evaluation of two
separate multivariate integrals, one for the numerator and one for the
denominator. The numerator has mf + mp terms, whereas the
denominator has mp terms.

For the series case, the conditional probability results in

P((FyUF,U...UF,;) N (A NA;N...NA,,)
P(A,NA,N...NA,,)

P (F|A) =
an

As was the case for P, (F), there are two strategies that can be used
to convert Eq. (17) into a form where the multivariate integral of
Eq. (12) is applicable. For the first approach, the complement and De
Morgan’s rule is used similar to Eqs. (13) and (14) to obtain

P((F\NFy,N...NF,;)NA)
- P(A)

Py(F|A)=1-P(F|A) =1
(18)

For the second approach, the definition for the probability of the
union of events is used similar to Eq. (15). For the special case where
two failure modes are considered, this results in

P(F,NA) P(F,NA) P((F, NF)nNA)
P(A) P(A) P(A)

P,(F|A) = (19)

In both cases, the multivariate integral of Eq. (12) can be used to
evaluate the numerator and denominator of the right-hand-side
terms. As was the case when evaluating P, (F), the same advantages
and disadvantages exist for each approach. However, numerical
experimentation has shown that the first approach is problematic.
The numerical integration of the numerator in Eq. (18) was found to
be difficult, and the Genz algorithm has trouble converging.
Although the second approach could have a large number of terms on
the right-hand side, it has the advantage that the Genz algorithm
seems to converge very easily for all of these terms. As a result, the
second approach is used throughout this paper. Furthermore, it is

N\

Cross section

Dh

b
Fig. 4 Cantilevered beam.

shown that, for the example problems considered here, an
insignificant loss of accuracy is incurred by creating an upper bound
for P (F|A) using

mf
P,(F|A) = min(l.O, > P(F,-|A)) (20)

i=1

VI. Numerical Examples

Two analytic example problems are considered to illustrate the
proposed method. The first is a simple cantilevered beam that has a
single load condition with a single failure mode and thus illustrates
the use of P(F|A). The second is a stepped cantilevered beam that
also has a single load condition but with multiple failure regions for
both the service and the proof loads. For the second example, a series
system reliability approach is followed, and thus the use of P (F|A)
isillustrated. In both cases, a single, uniform material is assumed, and
the volume instead of the weight is used as objective function. When
using a single, uniform material, minimizing the volume is
equivalent to minimizing the weight.

In both cases, a deterministic design is performed first, using the
limit load and safety factor approach of Eq. (2) and the allowable
failure stress of Eq. (3). The probability of failure for these
deterministic designs is then determined using the FORM approach
and is used as the required probability of failure P, for the RBDO
design that follows.

A. Cantilevered Beam Problem

The first example problem is a simple linear, homogeneous, and
isotropic cantilevered beam with a uniform cross section, as
illustrated in Fig. 4. The beam has length /, width b, and height /# and
is subject to a service load L at the tip.

It is assumed that the beam has random variables that are both
independent and normal with the distribution data outlined in
Table 1. Note that all variables have a fixed standard deviation. Also,
the mean values of the width and height are not yet known and will be
determined from the optimization process. The standard deviation of
the geometric variables represent machining tolerances and,
although a uniform distribution may have been more appropriate, a
normal distribution is used in the present work.

The first step is to perform a deterministic design of the beam to
minimize the volume such that

- =2 Omax = Ofail

b,h >0 21
5 2

where the first constraint is a simple geometric constraint to ensure
stability, and

Table 1 Random variable definition

Parameter Distribution
Load L N(1000, 100) N
Length / N(500.0,2.0) mm
Width b N(2,1.0) mm
Height & N(?,1.0) mm

Failure stress oy, N(350,25) MPa
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Table 2 Deterministic optimization results

Parameter Value, mm
Width b 17.1
Height 34.1
6L1 . .
Omax = W L= 14(/'LL + 3SL) Ofail = I'LU“E\" - 3S(IL\“

(22)

The deterministic optimization was performed using a safety
factor of 1.4 for the load, the mean values of the quantities in Table 1,
and the DOT [22] optimizer. The results are summarized in Table 2.
Both constraints are active at the optimum.

To determine the probability of failure P(F) for the deterministic
design outlined in Table 2, a FORM analysis was performed using the
distribution data of Table 1. The resulting probability of failure was
found to be P(F) = 7.12 x 10~°. Using this probability of failure as
P, in Eq. (4) resulted in a RBDO design that was the same as the
deterministic design. For this simple example problem, there is thus
no advantage moving from the deterministic to an equivalent RBDO
design.

Before continuing to the RBDO design that includes the proof test
data, a numerical experiment was performed to determine the
accuracy of the assumptions outlined in this paper for evaluating
P(F|A). For this experiment, a deterministic optimization was
performed using ,,, instead of Gy to obtain a design with a
probability of failure P(F) = 3.88 x 107 instead of 7.12 x 107°.
This was done to obtain a probability of failure value that could be
validated with a reasonable number of Monte Carlo simulations. The
accuracy of the Monte Carlo simulations was evaluated by
calculating the coefficient of variation (COV) using Eq. (23),
obtained from Haldar and Mahadevan [9]:

(1-Pp)P;
M

Py

COV (P)) =68, = 23)

In Eq. (23), P; is the probability of failure as estimated by the
Monte Carlo simulation, and M is the number of Monte Carlo
analyses that were performed. The Monte Carlo results are compared
to the probability of failure P(F), the probability of failing the proof
test 1 — P(A), and the conditional probability of failure P(F|A)
computed using the proposed FORM-based approach. For this
experiment, five Monte Carlo simulations were considered. Because
of the different magnitudes of the estimated probability of failure
values obtained, different numbers of analyses were considered for
each of the Monte Carlo simulations. For the first simulation, 5 x 10°
analyses were considered; for the second, third, and fourth

107! . - . - - . .
— P(F)
--+ P(FIP) ot
““““ 1- P(P)

1072

10—3 L

10-'F

1 R o

Probability of Failure

10-6 i ey

-7 i H i H H i i
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Proof Load (N)

Fig. 5 FORM analysis validation using Monte Carlo simulations (solid
lines from FORM analysis, dots from Monte Carlo simulations).

simulations, 25 x 10° analyses were considered; and for the fifth
simulation, 75 x 10° analyses were considered. The average COV
values for the five simulations were 0.04 for P(F),0.10 for 1 — P(A),
and 0.01 for P(F|A). The results are summarized in Fig. 5.

In Fig. 5, the y axis provides the probability of failure and has a
logarithmic scale. The x axis specifies the proof load value. For this
example, the proof load is defined as a point load that is applied at the
same location and in the same direction as the service load and varies
from the mean value of the service load (1000 N) to 1.4 times the
mean value of the service load (1400 N). For reference, the limit load
has a value of 1300 N. From Fig. 5, itis clear that the P(F) value is not
influenced by the proofload. However, as the proof load is increased,
the probability of failing the proof load 1 — P(A) is also increased,
while the conditional probability of failure P(F|A) is reduced.
Considering the COV values for the Monte Carlo simulations, all
three cases show good correlation between the FORM-based and the
Monte Carlo results. Clearly the Monte Carlo simulations validate
the overall trend obtained from the FORM-based approach.

To account for the proof test data, the following RBDO design
problem was defined to minimize the volume such that

% <2 P(F|A) <7.12%x 107° (24a)

which is the conditional POF, and

1- P(A) < Pproof b, h,p >0 (24b)
which is the probability of failing the proof test, where the required
probability of failure was obtained from the deterministic design, and
the required probability of failing the proof test P can be set by
the designer. In this work, the value of P, will be varied to obtain a
tradeoff graph. Note that the magnitude of the proof load p is also
included as a design variable. The results of the tradeoff study when
varying the value of Po.; in Eq. (24) is summarized graphically in
Fig. 6.

In Fig. 6, the objective function is normalized with respect to the
deterministic optimum, while the proof load is normalized with
respect to mean value of the service load. As a reference, the limit
load would have anormalized value of 1.3, and a proof test load of 1.2
times the limit load would have a normalized value of 1.56.

From Fig. 6, it is clear that, by including the proof test data as part
of the RBDO design process, it is possible to realize significant
weight savings while maintaining the same high reliability obtained
from the original deterministic design. Also, the normalized
objective function is reduced very quickly for relatively small
probabilities of failing the proof test, with diminishing returns for
higher probabilities of failing the proof test. Finally, when designing
both the structure and the proof test at the same time, the optimizer
prefers to use lower values for the proof test than one would typically

1.00

T 1.50

- -+ Normalized Proof Load

Normalized Objective
Normalized Proof Load

(1) SE— A — b S —
— Normalized Objective :
0.88 : : : : 1.30
0.000 0.002 0.004 0.006 0.008 0.010

Probability of Failing Proof Test

Fig. 6 Tradeoff study for different values of P, (With optimized
proof load).
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Normalized Objective
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Probability of Failing Proof Test

Fig. 7 Normalized objective function for different values of P, ¢ using
a fixed proof load.

expect. The standard proof test value would be 1.2 times the limit
load [23]. In Fig. 6, all tests are performed below this threshold.
Armed with a tradeoff graph like Fig. 6, the designer can make
informed decisions as to what weight savings can be realized for an
acceptable probability of failing the proof test.

The results of Fig. 6 should also be compared to the current way of
proof testing, where a fixed proof load is used. The tradeoff study for
afixed proof load equal to 1.2 times the limit load is shown in Fig. 7.
From Fig. 7, it is clear that, even with the current approach of using a
fixed proof test load, significant weight saving is possible. Also,
Fig. 7 has great value in helping the designer manage the risk
associated with performing the proof test. However, when compared
to Fig. 6, it is clear that additional weight savings is possible when
also considering the proof test load as a design variable.

B. Stepped Cantilevered Beam Problem

The second example problem is a stepped cantilevered beam with
three segments. The beam is also linear, homogeneous, and isotropic,
and each of the three segments are assumed to have a uniform cross
section. The height of each segment #; is different, while the beam
has a constant width b throughout. The length of the beam is
[ =0.5 m and is not considered as a random variable. The beam is
subject to a uniformly distributed service load ¢ and a proof load that
consists of three components L;, L,, and L;. These three load
components represent three actuators that are used to simulate the
service load during the proof test. As a result, the relative magnitude
of the three load components are fixed as shown in Fig. 8. The relative
magnitude between the three load components were obtained from a
lumped equivalent work approach (e.g., Cook et al. [24]), similar to
what one would use when modeling the beam with three finite
elements. The actual proof load is obtained by multiplying a single
scale factor with the relative magnitude of the load components to
obtain the values for L;.

As for the first example, the random variables are assumed to be
normally distributed and independent with the distribution data
summarized in Table 3. The mean values of the height and width
variables are not yet known and will be determined from the
optimization process.

q = Distributed service load

Vi, Ve

Fig. 8 Stepped cantilevered beam.

Table 3 Random variable definition

Parameter Distribution
Load ¢ N(7500,750) N/m
Width b N(?,1.0) mm
Height h, N(?,1.0) mm
Height &, N(?,1.0) mm
Height /5 N(?,1.0) mm

Failure stress og,; N(350,25) MPa (350, 25) MPa

The deterministic optimization is performed first, where the
volume is minimized such that

h.
—+4 =<2 25a
b (25a)
where

i=1,2,3 Omax < Otail b,h; =0 (25b)
where the first constraint equation represents three geometric
constraints to ensure stability, and

_3q (-0l
Omax =2\ 3

2
G=1.4(u, + 3
) q (g + 3s,) 26)

Ofail = Moy — 3SU1‘ui|

As was the case for the first example, a safety factor of 1.4 is used
for the load.

The DOT results for this deterministic optimization are
summarized in Table 4. The optimum design is fully stressed with
the failure stress constraint active for each of the three segments.

Nexta FORM analysis was performed to determine the probability
of failure for the deterministic design. A series system reliability
approach and the distribution data of Table 3 were used. The resulting
probability of failure was found to be P, (F) = 2.56 x 107>, With the
probability of failure known for the deterministic design, an
equivalent RBDO design could be performed using the formulation
outlined in Eq. (4). Unlike the first example, the equivalent RBDO for
the second example provided a design that differed significantly from
the deterministic design. The RBDO design is summarized in
Table 5. Table 5 also includes the results from a second RBDO run,
where the value of P,,, was changed from 2.56 x 10~ t0 1.0 x 107",
The reduced weight associated with the RBDO design is a result
of the difference between the two design approaches, which is
discussed in more detail later.

Table 5 indicates that the equivalent RBDO design with the same
P,(F) value as the deterministic design resulted in a 12% weight

Table 4 Deterministic optimization results

Parameter Value, mm
Width b 21.0
Segment 1 height £, 42.1
Segment 2 height /, 28.0
Segment 3 height /4 14.0

Table 5 Reliability-based design optimization results

Parameter Deterministic RBDO? RBDO?
P.(F) 2.56 x 1073 2.56 x 10~ 1.0 x 1077
Width b, mm 21.0 19.3 20.3
Height /;, mm 42.1 38.7 40.7
Height, h,, mm 28.0 26.7 28.1
Height, h;, mm 14.0 15.0 16.1
Volume (x10~¢ m?) 885.3 777.1 862.9

“RBDO design with P, = 2.56 x 1075
PRBDO design with P,oq = 1.0 x 1077,
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Table 6 Probability of failure values for each segment; both
designs have P,(F) = 2.56 x 105 (stress values calculated from
the design load in both cases)

Deterministic RBDO
Parameter ~ Stress, MPa P(F) Stress, MPa P(F)
Segment 1 275 7.19 x 10710 354 1.56 x 1073
Segment 2 275 9.73 x 107° 329 7.21 x 107°
Segment 3 275 2.55x 1073 261 4.23 x 107°

savings when compared to the deterministic design. In addition,
when reducing the P value to 1.0 x 1077, the probability of failure
was reduced by roughly two orders of magnitude while maintaining
roughly the same weight when compared to the deterministic design.
The weight savings that are realized in the RBDO designs are a result
of the distribution of the probability of failure values for each of the
three segments as outlined in Table 6.

Table 6 clearly illustrates the difference between the two design
approaches. The deterministic design is only concerned with stress
and results in a fully stressed design with the same maximum stress
value for each segment. In contrast, the RBDO design is only
concerned with the P, (F) value, which is determined from the P(F)
values for each segment. Acar and Haftka [25] illustrated that, for the
RBDO design, the ratio of the probability of failure for each segment
should be roughly equal to the weight ratio of the segments. The
weight and probability of failure ratios of the three segments are
summarized in Table 7. In both cases, the normalization was
performed using the values for segment 3. Clearly the weight and
probability of failure ratios exhibit the same trend as observed by
Acar and Haftka.

Although the P (F) value is the same for both designs, the P(F)
values for each segment are significantly different. Even though the
maximum stress value is the same for each segment in the
deterministic design, only segment 3 is critical from a probability of
failure point of view, whereas segments 1 and 2 are overdesigned.
The reason for the different P(F') values is that the standard deviation
for the h; values are constant. For segment 3, the mean deterministic
design value for 4 is much smaller than for segment 1. The fixed
standard deviation thus has a much larger influence on the stress
value of segment 3 than it does on the stress value of segment 1,
resulting in the higher probability of failure for segment 3. Similarly,
due to the smaller variability in the stress value of segment 1, the
RBDO approach allows a higher stress value for this segment while
maintaining a lower stress value in segment 3.

Before continuing to the RBDO design that includes the proof test
data, another numerical experiment was conducted to compare the
results obtained from the FORM-based approach outlined in this
paper with a Monte Carlo simulation. For this experiment, the RBDO
design with P,(F) = 2.56 x 10~ was used as a design point, and a
proof load that represents the limit load was applied. For the
Monte Carlo simulation, 10® analyses were performed, and the
results are summarized in Table 8.

In Table 8, the FORM** column indicates results obtained from
the upper bound approximation for the P, values as outlined in
Eq. (20). Table 8 shows excellent correlation between the FORM and
FORM#** columns, indicating that the upper-bound approximation
approach for estimating the P values is valid for the current example
problem. In addition, Table 8 shows good correlation between the
Monte Carlo and FORM approaches for the P, (F) and P(A) values,

Table 7 Comparison of weight and probability of
failure ratios for the RBDO design (in both cases
the values are normalized with that of segment 3)

Normalized weight Normalized P, (F)

Segment 1 3 3.7
Segment 2 2 1.7
Segment 3 1 1

Table 8 Comparison of Monte Carlo and FORM results for RBDO
design with P,(F) = 2.56 x 10~ and proof load equal to limit load; for
the Monte Carlo results, the values in parenthesis indicate the COV
values obtained from Eq. (23)

Parameter Monte Carlo FORM FORM#**
P,(F) 2.764 x 107> 2.557 x 107 2.701 x 1075
(0.019)
P(A) 0.997827 0.998038 —
(4.667 x 107%)
P,(F|A) 2.916 x 10-° 3.422 x 1076 3.423 x 1076
(0.059)

with a slightly larger variation for the P (F|A) value. This larger
variation can in part be explained by the smaller numerical value
associated with P (F|A). The Monte Carlo simulation resulted in
2764 failures in 10% simulations used for estimating the P, (F) value,
compared to only 291 failures in 10® simulations used for estimating
the P, (F|A) value. The Monte Carlo estimate of P (F|A) is thus less
accurate than that of P (F).

The final step for this example problem was to perform the RBDO
design that accounts for the proof test data by minimizing the volume
such that

h.

=2 P(FIA) <10x 1077 (27a)

which is the conditional POF, and

1- P(A) < Ppronf b? hi* p= 0 (27b)
which is the probability of failing any proof test.

The P, value used for the conditional probability of failure in
Eq. (27) was obtained from the second RBDO design outlined in
Table 5. The magnitude of the proof load is included as a design
variable, and the allowable probability of failing the proof test P;o0r
was varied to generate a tradeoff as shown in Fig. 9.

In Fig. 9, the x axis provides the specified probability of failing the
proof test. The objective function is normalized with respect to the
RBDO design for P(F) = 1.0 x 1077 (the RBDO design already
presents a small weight savings over the corresponding deterministic
design, but with a significantly higher reliability), and the proof load
is normalized with respect to the mean value of the service load. As a
reference, a proof test load that corresponds to 1.2 times the limit load
would have a normalized value of 1.56.

Figure 9 presents a similar effect on the objective function, as was
observed in Fig. 6 with a rapid initial dropoff in weight followed by
diminishing returns for larger proof failure probabilities. Figure 9
indicates roughly an 8% reduction in weight over the corresponding
RBDO design (that does not account for the proof test data) with a
probability of 1 in 1000 of failing the proof load. For the proof load,
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099 [\ i SN SRS DU B
. | ==+ Normalized Proof Load 1.25
, 098t
= k)
‘g 0.97 Fi 1.20 =
Q 1 =
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Fig. 9 Tradeoff study for different values of P, .-
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as was the case in Fig. 6, Fig. 9 indicates that the proof tests should be
performed at smaller values than what is typically used. In this case,
the proof load should be just below the limit load, while standard
practice is to use a proof load 1.2 times the limit load. It is interesting
to note that the traditional use of acceptance testing is to check
workmanship. However, the question at which level to perform the
acceptance test is generally not known and typically depends on
individual experience. Tradeoff graphs like those presented in Figs. 6
and 9 may be used as a quantitative tool to help determine and
motivate an appropriate level at which to perform the acceptance test.
InFig. 9, the proof load basically remains constant over the full range
Of Ppo0p values considered. The optimizer increases the probability
of failing the proof test by decreasing the weight rather than by
increasing the proof load.

VII. Conclusions

This paper presents a methodology for including the results of
proof/acceptance tests in the reliability-based design optimization
(RBDO) process. The proposed method allows for the simultaneous
design of the structural component and the proof test itself and
provides the designer with direct control over the probability of
failing the proof test. The results indicate that a significant weight
saving is possible when including the proof test results in the design
process as compared to equivalent deterministic or RBDO designs,
while maintaining the same probability of failure as obtained from
the deterministic design. Tradeoff graphs generated here allows the
designer to select an appropriate probability of failing the proof test,
based on the project at hand.

Several issues should be further investigated in future work. This
includes the assumption that the components remain in pristine
condition after the proof test. The use of more realistic distribution
data, other than independent, normal distributions, should be
explored. For example, other distributions may be more appropriate
than the normal distribution used here to represent manufacturing
tolerances. Also, analysis techniques other than the first-order
reliability method should be investigated to provide the designer with
a wider range of tools for performing the probabilistic analysis.
Finally, the method should be applied to more complicated
applications that require the use of numerical simulations techniques
like finite-element analyses.
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